$>$ Manipulation of discrete time signals:
\checkmark Manipulations involving the independent variable n :
区 Shifted in time Operations.
x Folding, reflection or time reversal.
囚 Time Scaling-
\checkmark Manipulations involving the signal amplitude (dependent variable).

Manipulation of discrete time signals
$>$ Manipulations involving the independent variable n.
$>$ Manipulations involving the signal amplitude (dependent variable).
Manipulation involving the independent variable n (time):

1. Shifted in time Operations:

Given a D-T signal $\boldsymbol{x}[\boldsymbol{n}]$ and a positive integer \boldsymbol{p}, then

- $\boldsymbol{y}[n]=\boldsymbol{x}[n-p]$ is the \boldsymbol{p}-step right shift of $\boldsymbol{x}[n]$ that results in a delay of the signal by \boldsymbol{p} units of time (replacing \boldsymbol{n} by $\boldsymbol{n}-\boldsymbol{p}$).
- $\boldsymbol{y}[n]=\boldsymbol{x}[n+p]$ is the \boldsymbol{p}-step left shift of $\boldsymbol{x}[n]$ that results in an advance of the signal by \boldsymbol{p} units of time (replacing \boldsymbol{n} by $\boldsymbol{n}+\boldsymbol{p}$).

Examples:

a) $\boldsymbol{P}_{\mathbf{3}}[\boldsymbol{n}-\mathbf{3}]$: Three-step right shift of $\mathrm{D}-\mathrm{T}$ rectangular pulse $\boldsymbol{P}_{\mathbf{3}}[\boldsymbol{n}]$ (see figure 2-8).
b) $\boldsymbol{P}_{3}[\boldsymbol{n}+3]$: Three-step left shift of D-T rectangular pulse $\boldsymbol{P}_{\mathbf{3}}[\boldsymbol{n}]$ (see figure 2-8).

c) The D-T signal

$$
x[n]= \begin{cases}3 & n=1,2 \\ -2 & n=-1,-2 \\ 0 & n=0 \text { and }|n|>2\end{cases}
$$

Find the time-shifted signal $y[n]=x[n+4]$
Answer:

$$
x[n]= \begin{cases}3 & n=-2,-3 \\ -2 & n=-5,-6 \\ 0 & n=-4, n<-6 \quad \text { and } n>-2\end{cases}
$$

2. Folding, reflection or time reversal:

Let $\boldsymbol{x}[\boldsymbol{n}]$ be the original sequence, and $\boldsymbol{y}[\boldsymbol{n}]$ be reflected sequence, then $\boldsymbol{y}[\boldsymbol{n}]$ is defined by $y[n]=x[-n]$, this means that we replace the independent variable \boldsymbol{n} by $-\boldsymbol{n}$; the result of this operation is a folding or reflection of the signal about the time origin $\boldsymbol{n}=\mathbf{0}$.

- It is important to note that the operation of folding and time delaying (or advancing) a signal are not commutative:
if SO (shifted operation, for example Time-Delay) and FO (folding operation), we can write:

$$
\begin{aligned}
& \mathrm{SO}_{\mathrm{k}}\{x[\mathrm{n}]\}=\mathrm{x}[\mathrm{n}-\mathrm{k}], \mathrm{k}>0 . \\
& \mathrm{FO}\{x[\mathrm{n}]\}=\mathrm{x}[-\mathrm{n}] .
\end{aligned}
$$

Now:

$$
\begin{aligned}
& \operatorname{SO}_{k}\{F O\{x[n]\}\}=\operatorname{SO}_{k}\{x[-n]\}=x[-n+k] \text { where as } \\
& F O\left\{\operatorname{SO}_{k}\{x[n]\}\right\}=F O\{x[n-k\}=x[-n-k]
\end{aligned}
$$

so :

```
SO
```


Examples:

a) Show the graphical representation of the signals $\boldsymbol{x}[-\boldsymbol{n}]$ and $\boldsymbol{x}[-\boldsymbol{n}+\mathbf{1}]$, where $\boldsymbol{x}[\boldsymbol{n}]$ is the signal illustrated in figure 2-9.

Figure 2_9
Answer: (see figure 2-10)

Figure 2_10
A simple way to verify that the result is correct is to compute samples, such as:

$$
\begin{aligned}
& y[-3]=x[4]=3, \\
& y[-2]=x[3]=2, \\
& y[-1]=x[2]=1, \\
& y[0]=x[1]=0, \\
& y[1]=x[0]=1, \\
& y[2]=x[-1]=3, \\
& y[3]=x[-2]=1
\end{aligned}
$$

b) The D-T signal

$$
x[n]=\left\{\begin{array}{lc}
+1 & n=1 \\
-1 & n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the composite signal

$$
y[n]=x[n]+x[-n]
$$

Answer: $y[n]=0$; for all integer values of \boldsymbol{n}.
In table 2-1, the precedence rules for the time shifting and the time folding operations are explained.

Table 2-1: Precedence rules for time shifting and time folding

Order of shifting and folding operations	
O. Folding \rightarrow Shift to the right	$x[n] \xrightarrow{\text { OO }} x[-n] \xrightarrow{S O_{R}} x[-(n-p)]=x[-n+p]$
2. Shift to the left \rightarrow Folding	$x[n] \xrightarrow{S O_{L}} x[n+p] \xrightarrow{F O} x[-n+p]$
3. Folding \rightarrow Shift to the left	$x[n] \xrightarrow{F O} x[-n] \xrightarrow{S O_{L}} x[-(n+p)]=x[-n-p]$
4. Shift to the right \rightarrow Folding	$x[n] \xrightarrow{S O_{R}} x[n-p] \xrightarrow{F O} x[-n-p]$

3. Time Scaling

Let $x[n]$ denote a D-T signal, then the signal $y[n]$ obtained by scaling the independent variable, time \boldsymbol{n}, by a factor \boldsymbol{a} is defined by

$$
y[n]=x[a n], a>0
$$

\checkmark If $\boldsymbol{a}>\mathbf{1}$, the signal is a compressed version of $\boldsymbol{x}[\boldsymbol{n}]$ and some values of the discrete time signal $y[n]$ are lost.
\checkmark if $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, then the signal $\boldsymbol{y}[\boldsymbol{n}]$ is an expanded version of $\boldsymbol{x}[\boldsymbol{n}]$.

Example:

a) For $a=2$; in $x[2 n]$, the samples $x[n]$ for $n= \pm 1, \pm 3, \pm 5, \ldots$ are lost.
b) $x[n]= \begin{cases}n & \text { for nodd } \\ 0 & \text { otherwise }\end{cases}$

Determine $y[n]=x[2 n]$

Answer:

$$
y[n]=0 \quad \text { for all } n
$$

Precedence Rules for time shifting and time scaling:

* C-T case:

Suppose that $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{c t}-s)$, this relation between $\boldsymbol{y}(t)$ and $\boldsymbol{x}(\boldsymbol{t})$ satisfies the conditions:

$$
y(0)=x(-s) ; \text { and } y\left(\frac{s}{c}\right)=x(0)
$$

which provide useful checks on $\boldsymbol{y}(\boldsymbol{t})$ in terms of corresponding values of $\boldsymbol{x}(\boldsymbol{t})$.
The correct order for time shifting and scaling operations:
a) The time shifting operation is performed first on $\boldsymbol{x}(\boldsymbol{t})$, we get an intermediate signal $\boldsymbol{v}(\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{t}-\boldsymbol{s})$; the time shift has replaced \boldsymbol{t} by $\boldsymbol{t}-\boldsymbol{s}$.
b) The time scaling operation is performed on $v(t)$, replacing t by $c t$ and the result

$$
y(t)=v(c t)=x(c t-s)
$$

Examples:

1. Voice signal recorded on a tape recorder:
© Compression: if the tape is played back at a rate faster than the original recording rate.
区 Expansion: if the rate is slower than the original.
2. Consider the rectangular pulse $\boldsymbol{x}(\boldsymbol{t})$ of unit amplitude and a duration of 4 units, depicted in figure 2-11. Find $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}(\mathbf{3 t}-4)$.

Solution:

$c=3, \quad s=4 \Rightarrow y(0)=x(-4)=0 ; y\left(\frac{s}{c}\right)=y\left(\frac{4}{3}\right)=x(0)=1$, the graphical solution is represented in figure 2-12.

D-T case:
The same rules are used in the case of D-T signals, in the following example, these rules are explained.
Example:
Suppose that $x[n]=\{2,-1,0,-3,4\}$. Find $y[n]=x[3 n-4]$

Solution:

$c=3, \quad s=4 \Rightarrow y[0]=x[-4]=0 ; y\left[\frac{s}{c}\right]=y\left[\frac{4}{3}\right]=x[0]=0$,
The graphical solution is represented in figure 2-13.
To get $y[n]=v[3 n]$, we calculate the following points: $y[0], y[1]$ and $y[2]$

$$
\begin{aligned}
& y[0]=v[0] \\
& y[1]=v[3] \\
& y[2]=v[6]
\end{aligned}
$$

Figure 2_13

Manipulation involving the signal amplitude (dependent variable):
Transformations performed on amplitude (dependent variable) are shown in table 2-2.

Table 2-2: Transformation performed on amplitude

Operation	D-T signals	C-T signals	Physical device
1. Amplitude scaling	$y[n]=c x[n]$	$y(t)=c x(t)$	Electronic amplifier
	c-scaling factor		
2. Addition	$y[n]=x_{1}[n]+x_{2}[n]$	$y(t)=x_{1}(t)+x_{2}(t)$	Audio mixer
3. Multiplication	$y[n]=x_{1}[n] \cdot x_{2}[n]$	$y(t)=x_{1}(t) \cdot x_{2}(t)$	Modulator
4. Differentiation	Difference equation	$y(t)=d \frac{x(t)}{d t}$	Inductor
5. Integration	Summation	$y(t)=\int_{-\infty}^{t} x(\tau) d \tau$	Capacitor

